6 research outputs found

    Rapid Localization and Mapping Method Based on Adaptive Particle Filters.

    Get PDF
    With the development of autonomous vehicles, localization and mapping technologies have become crucial to equip the vehicle with the appropriate knowledge for its operation. In this paper, we extend our previous work by prepossessing a localization and mapping architecture for autonomous vehicles that do not rely on GPS, particularly in environments such as tunnels, under bridges, urban canyons, and dense tree canopies. The proposed approach is of two parts. Firstly, a K-means algorithm is employed to extract features from LiDAR scenes to create a local map of each scan. Then, we concatenate the local maps to create a global map of the environment and facilitate data association between frames. Secondly, the main localization task is performed by an adaptive particle filter that works in four steps: (a) generation of particles around an initial state (provided by the GPS); (b) updating the particle positions by providing the motion (translation and rotation) of the vehicle using an inertial measurement device; (c) selection of the best candidate particles by observing at each timestamp the match rate (also called particle weight) of the local map (with the real-time distances to the objects) and the distances of the particles to the corresponding chunks of the global map; (d) averaging the selected particles to derive the estimated position, and, finally, using a resampling method on the particles to ensure the reliability of the position estimation. The performance of the newly proposed technique is investigated on different sequences of the Kitti and Pandaset raw data with different environmental setups, weather conditions, and seasonal changes. The obtained results validate the performance of the proposed approach in terms of speed and representativeness of the feature extraction for real-time localization in comparison with other state-of-the-art methods

    Rapid Localization and Mapping Method Based on Adaptive Particle Filters

    No full text
    With the development of autonomous vehicles, localization and mapping technologies have become crucial to equip the vehicle with the appropriate knowledge for its operation. In this paper, we extend our previous work by prepossessing a localization and mapping architecture for autonomous vehicles that do not rely on GPS, particularly in environments such as tunnels, under bridges, urban canyons, and dense tree canopies. The proposed approach is of two parts. Firstly, a K-means algorithm is employed to extract features from LiDAR scenes to create a local map of each scan. Then, we concatenate the local maps to create a global map of the environment and facilitate data association between frames. Secondly, the main localization task is performed by an adaptive particle filter that works in four steps: (a) generation of particles around an initial state (provided by the GPS); (b) updating the particle positions by providing the motion (translation and rotation) of the vehicle using an inertial measurement device; (c) selection of the best candidate particles by observing at each timestamp the match rate (also called particle weight) of the local map (with the real-time distances to the objects) and the distances of the particles to the corresponding chunks of the global map; (d) averaging the selected particles to derive the estimated position, and, finally, using a resampling method on the particles to ensure the reliability of the position estimation. The performance of the newly proposed technique is investigated on different sequences of the Kitti and Pandaset raw data with different environmental setups, weather conditions, and seasonal changes. The obtained results validate the performance of the proposed approach in terms of speed and representativeness of the feature extraction for real-time localization in comparison with other state-of-the-art methods

    Localisation and Mapping of Self-driving Vehicles based on Fuzzy K-means Clustering: A Non-semantic Approach

    No full text
    Localisation and mapping are crucial for autonomous vehicles, as they inform the vehicle of where exactly they are in their environment as well as relevant infrastructures within the identified environment. This paper demonstrates the ability of non-semantic features to represent point clouds and use them to explain the environment. Our proposed architecture uses the Fuzzy K-means approach to extract features from LiDAR scenes in order to reduce the feature map and guarantee that the features are identifiable in each frame. Secondly, global mapping is done with the Gaussian Mixture Model (GMM) to facilitate data association between the frames to be mapped and helps localisation tasks to be performed accurately by the particle filter. The performance of the proposed technique is compared to other state of the art methods over different sequences of the Kitti raw dataset with different environmental structures, weather conditions and seasonal changes. The results obtained demonstrates the superiority of the proposed approach in terms of speed and representativeness of features needed for real-time localisation. Moreso, we achieved competitive accuracies compared to other state-of-the-art methods

    FP-Conv-CM: Fuzzy Probabilistic Convolution C-Means

    Get PDF
    Soft computing models based on fuzzy or probabilistic approaches provide decision system makers with the necessary capabilities to deal with imprecise and incomplete information. Hybrid systems based on different soft computing approaches with complementary qualities and principles have also become popular. On the one hand, fuzzy logic makes its decisions on the basis of the degree of membership but gives no information on the frequency of an event; on the other hand, the probability informs us of the frequency of the event but gives no information on the degree of membership to a set. In this work, we propose a new measure that implements both fuzzy and probabilistic notions (i.e., the degree of membership and the frequency) while exploiting the ability of the convolution operator to combine functions on continuous intervals. This measure evaluates both the degree of membership and the frequency of objects/events in the design of decision support systems. We show, using concrete examples, the drawbacks of fuzzy logic and probability-based approaches taken separately, and we then show how a fuzzy probabilistic convolution measure allows the correction of these drawbacks. Based on this measure, we introduce a new clustering method named Fuzzy-Probabilistic-Convolution-C-Means (FP-Conv-CM). Fuzzy C-Means (FCM), Probabilistic K-Means (PKM), and FP-Conv-CM were tested on multiple datasets and compared on the basis of two performance measures based on the Silhouette metric and the Dunn’s Index. FP-Conv-CM was shown to improve on both metrics. In addition, FCM, PKM, and FP-Conv-CM were used for multiple image compression tasks and were compared based on three performance measures: Mean Square Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural SImilarity Index (SSIM). The proposed FP-Conv-CM method shows improvements in all these three measures as well
    corecore